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ABSTRACT 
Accelerated loss of ice from Greenland and Antarctica 
has been observed in recent decades. Ice thickness is a 
key factor in making predictions about the future of 
massive ice reservoirs and can be estimated by 
calculating the exact location of the ice surface and 
bottom in radar imagery. Identifying the locations of ice 
boundaries is typically performed manually which is a 
very time consuming procedure. Here we propose a 
novel approach which automatically detects the complex 
topology of ice surface and bottom boundaries based on 
charged particle concept. Here we first applied 
anisotropic diffusion to remove the noise and enhance 
the image. At the second step, we detected the contours 
in the image based on Coulomb's electrostatic law and 
the assumption that each pixel is an electrically charged 
particle. The final ice surface and bottom are detected 
based on the projection profile of the contours. The 
results are evaluated on a large dataset of airborne radar 
imagery collected during IceBridge mission over 
Antarctica and show promising results with respect to 
hand-labeled ground truth. 
 

Index Terms—Remote sensing, image analysis, 
radar 
 

1. INTRODUCTION 
 
Thus far, serious damages have been caused to our 
environment by global warming. In recent decades, 
accelerated loss of ice from Greenland and Antarctica 
has been observed [1]. The melting of polar ice sheets 
and mountain glaciers, potentially leading to the flooding 
of coastal regions and putting millions of people around 
the world at risk, has a significant influence on sea level 
rise and ocean currents. Precise calculation of ice 
thickness therefore is very important for sea level and 
flood monitoring. Usually, human experts in order to 
identify ice and bedrock, mark ice sheet layer and 
bedrock by hand, which is a very time consuming and 
tiresome task and may create errors. To provide 
important information about ice sheet thickness, the 
multichannel coherent radar depth sounder was used 
during the IceBridge mission [2]. In this work the images 
are the CReSIS standard output product [3] and by using 

pulse compression, synthetic aperture radar (SAR) 
processing, and multi-looking they are formed. The 
complete processing details are provided in Gogineni et 
al. [4].   
For layer finding and ice thickness in radar images, 
several semi-automated and automated methods have 
been introduced in the literature [5] [6][7][8][9]. 
Crandall et al [5] used probabilistic graphical models for 
detecting ice layer boundary in echogram images. The 
extension of this work was presented in [6] where they 
used Markov-Chain Monte Carlo to sample from the 
joint distribution over all possible layers conditioned on 
an image. A Gibbs sampling instead of dynamic 
programming based solver was used for performing 
inference. The problem with using graphical models is 
that it needs a lot of training samples (around half of the 
actual dataset) which can be very time-consuming to be 
labeled manually by a human. In another work, Gifford 
[7] compared the performance of two methods, edge 
based and active contour, for automating the task of 
estimating polar ice and bedrock layers from airborne 
radar data acquired over Greenland and Antarctica. They 
showed that their edge-based approach offers faster 
processing but suffers from lack of continuity and 
smoothness that active contour provides. Mitchell et al 
[8] used a level set technique for estimating bedrock and 
surface layers. However, for each single image the user 
needs to re-initialize the curve manually and as a result 
the method is quite slow and was applied only to a small 
dataset. This problem was fixed in [9] where authors 
introduced a distance regularization term in the level set 
approach to maintain the the regularity of level set 
intrinsically. Therefore, it does not need any manual re-
initialization and was automatically applied on a large 
dataset.  
In this paper a novel contour detection method, which 
called ElFi method, is developed to automatically 
identify the ice and bedrock layers in a large dataset of 
radar imagery. In this approach, an electrically charged 
particle plays a role of a pixel that has electrostatic 
interaction with other neighboring particles/pixels. The 
grayscale intensity of the pixel will represent electrical 
charge of each particle indirectly. After setting some 
rules to create similar characteristics from electrical 
charges into each pixels, the electrical field computed 



result for each pixel is bound to count as edges of image. 
To improve the quality of counter detection, the images 
were first enhanced by anisotropic diffusion [10] and the 
final layers were results for calculating the local maxima 
in the projection profile. 
After this introduction, the details of the proposed 
method will be discussed in section 2. Experimental 
results will be discussed in section 3. The results are 
evaluated in section 4. 

 
2. METHODOLOGY 

 
Our method consists of three main steps:1- anisotropic 
diffusion to remove the noise and enhance the quality of 
the image while preserving the edges. 2- ElFi method 
which is our proposed contour detection algorithm based 
on the theory of electrostatic and 3- projection profile to 
extract the layers of ice surface and bottom from the 
output of contour image.  
 
2.1. Anisotropic Diffusion 
 
Radar imagery suffers from low signal to interference 
and noise ratios (SINR) due to a) signal attenuation while 
traveling through ice, b) radar clutter energy, and c) 
thermal noise and occasional electromagnetic 
interference. It is necessary to remove noise prior to any 
contour detection algorithm. However most of the 
enhancing techniques, in addition to removing noise will 
affect the quality of edges and contours. Here we used 
anisotropic diffusion technique [10] which remove the 
noise effect while preserving the contour’s quality.  
 
In the diffusion equation, the diffusion coefficient c is 
considered as a constant independent of the space 
location. The anisotropic diffusion equation is: 
 

� 𝐼𝐼𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)∇𝐼𝐼)
𝐼𝐼𝑡𝑡 = 𝑐𝑐(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)∆𝐼𝐼 + ∇𝑐𝑐.∇𝐼𝐼 (1)  

 
where div is divergence operator, ∇ is the gradient 
operator and ∆ is the Laplacian operator. if we presume 
c (x, y, t) as a constant, the isotropic heat diffusion 
equation will be: 
 

𝐼𝐼𝑡𝑡 = 𝑐𝑐∆𝐼𝐼 (2)  
 
Later, this method undergone smoothing filter within a 
region in preference to smoothing across the boundaries 
by setting the conduction coefficient in the interior to be 
1 and 0 at the boundaries of each region. Therefore, the 
blurring occurs separately in each region with no 
interaction between regions, which these region 
boundaries would remain sharp. 
 
2.2. ElFi Method 

 
To detect the boundary of ice surface and bottom layers, 
we developed a novel contour detection technique based 
on electric field (ElFi). Most of the pioneering methods 

in contour detection are based on quantifying the 
presence of a boundary at a given location in the image. 
The Roberts, Sobel, and Prewitt operators detect edges 
by convolving an image with given operators. The Canny 
method [11] uses non-maximum suppression and 
hysteresis thresholding steps to model sharp 
discontinuities in a given image. Moreover, there are 
several unique and novel researches on edge detection 
methodologies so far. As an example, the method used in 
[12] is based on theory of universal gravity to perform 
edge detection. Therefore, as an inspiration, we used 
Coulomb's Law of electrostatic force to extract the image 
contours. It is believed that having both attractive and 
repulsive forces as a unique characteristic of charged 
particles will improve the contour detection performance 
in images.  
In the ElFi method, every pixel is assumed to be an 
electrically charged particle that has electrostatic 
interaction with other neighboring particles.  Initially, by 
comparing the pixel characteristic with particle 
characteristic, it can be seen that each particle in the real 
world has two characteristics: firstly, it has a small 
charge; secondly, the charge can be positive or negative. 
The pixel values in grey level image vary between 0 and 
255 and they are always positive value. Therefore, in the 
first step, pixel values will be transferred to a range more 
similar to electrically charged particles according to 
equation 3: 

𝑞𝑞𝑖𝑖 =
2𝑝𝑝𝑖𝑖 − 2𝑛𝑛 + 1

2𝑛𝑛+1 − 1
 (3)  

 
where 𝑝𝑝𝑖𝑖  is the grey level value of pixel i and 𝑞𝑞𝑖𝑖 is the 
equivalent electrical charge for that pixel. n is the number 
of bits in the image. 
Then, the both force types, be it attractive or repulsive, 
specifies the electric field direction used for contour 
detection. The electric field of a point charge, which is 
located in the center, can be obtained from Coulomb's 
law:  

 𝐸𝐸�⃑1 =
�⃑�𝐹
𝑞𝑞1

  (4)  

where 𝐸𝐸�⃑1 is electric field of 𝑞𝑞1 particle affected by 
surrounding particles in the 𝑞𝑞1 neighborhood.  
This equation is computed for every neighbor of central 
pixel. The differential electric field for two neighbor 
particles is calculated according to equation 5: 

 ∆𝐸𝐸𝑖𝑖(𝑄𝑄𝑖𝑖) =
|𝑄𝑄𝑖𝑖 − 𝑞𝑞1|

|𝑟𝑟𝑖𝑖|2
𝑟𝑟𝑖𝑖

|𝑟𝑟𝑖𝑖|
  (5)  

 
where 𝑄𝑄𝑖𝑖  is the electric charge of the neighbor i and 𝑞𝑞1 is 
the electric charge of central pixel. Finally, the vector 
sum of all electrical fields is used to calculate the 
magnitude of signal variation and to detect image 
contours. For example, for a 3*3 kernel in the image, the 
equation 5 would be in the following form: 

 

𝐸𝐸�⃗ = � �
|𝑄𝑄(𝑠𝑠, 𝑡𝑡) − 𝑄𝑄(𝑑𝑑, 𝑗𝑗)|

𝑑𝑑𝑄𝑄(𝑠𝑠,𝑡𝑡),𝑄𝑄(𝑖𝑖,𝑗𝑗)
2  

𝑗𝑗+1

𝑡𝑡=𝑗𝑗−1

𝑖𝑖+1

𝑠𝑠=𝑖𝑖−1

  (6)  



 
    Figure 1b shows the result of applying the ElFi 
technique on the enhanced SAR image ( Figure 1a) 
where the top layer is the ice surface and bottom layer is 
the ice bottom which can be a bedrock or sea surface.  
 

 
(a) 

 
(b) 

Figure 1: (a) Enhanced SAR image by Anisotropic 
diffusion, (b) the result of ElFi technique 
 
 
2.3. Projection profile 
 
As it can be seen in figure 1b the image contours are 
highlighted where the ice surface and bottom have 
brighter values. To extract the exact ice surface and 
bottom boundaries, we calculated the the local horizontal 
projection profile on every 5 pixels’ column. The two 
local maximum in the projection profile (Figure 2) 
depicts the location of ice surface and bedrock. 

 
 
Figure 2: Horizontal projection profile for local vertical 

columns 
 
 
 
 

3. EXPERIMENTAL RESULTS 
 
We applied the proposed approach on the 2009 NASA 
Operation IceBridge Mission. The images have a 
resolution of 900 pixels in the horizontal direction, which 
covers around 50km on the ground, and 700 pixels in the 
vertical direction, which corresponds to 0 to 4km of ice 
thickness. We applied our method on total of 323 images 
and compared the results with the ground truth. The 
ground-truth images have been produced by human 
annotators. Figure 3 shows the results of our approach 
with respect to the ground-truth. Figure 3a shows the 
original image. Figure 3b shows the result after 
anisotropic diffusion. As it can be seen in this figure, the 
image is enhanced while the edges are preserved. This 
stage is necessary for reducing the noise. At the next step, 
the ElFi method was applied on the enhanced image. As 
it can be seen in figure 3c, ElFi method detects contours 
in the image. To highlight the ice surface and bottom 
boundaries, the projection profile of the ElFi result was 
calculated. Figure 3d shows our final results. Figure 3e 
shows the ground-truth results acquired by manually 
picked layers. The output of our approach shows a 
satisfactory results compared to the manually picked 
interfaces.     
To evaluate the performance of our approach, we 
calculated precision (P), recall (R), and F-measure as 
follow: 

 R =
Tp

Tp + FN
 (7)  

 

 P =
TP

TP + FP
 (8)  

 
 
where TP is true positive or correct result, FP is false 
positive or unexpected result, FN is false negative or 

Vertical edge of the image 
Pixels count 



missing results, and TN is true negative. Precision 
measures the exactness of a classifier and recall measures 
the completeness of a classifier. They can be combined 
to produce a single metric known as F-measure, which is 
the weighted harmonic mean of precision and recall. The 
F-measure defined as:  
 

 F =
1

𝛼𝛼 1
𝑃𝑃 + (1 − 𝛼𝛼) 1

𝑅𝑅
 (9)  

 
captures the precision and recall tradeoff. The F-measure 
is valued between 0 and 1, where larger values are more 
desirable.  
Table 1 shows the average precision, recall and F-
measure on our entire dataset.  
 

Table 1: The result of our approach on 2009 NASA 
Operation IceBridge Mission 

 Precision 
 

Recall 
 

F-measure 
Our results 0.84 0.79 0.81 

 
 
 
 

 
 
Figure 3: The result of our approach. a) original image, 
b) the enhanced image after anisotropic diffusion, c) 
detected contours with ElFi technique, d) detected ice 
surface and bottom after projection profile, e) ground-
truth 
 

4. CONCLUSION 
In tis paper we developed a novel approach which 
automatically detects the complex topology of ice 
surface and bottom boundaries based on Electric field 
(ElFi). Here we first applied anisotropic diffusion to nd 

(b) 

(c) 

(d) 

(e) 

(a) 



enhance the image while preserving the edges. At the 
second step, the contours were detected based on 
Coulomb's electrostatic law and the assumption that each 
pixel is an electrically charged particle. The final ice 
surface and bottom were detected based on the projection 
profile of the contours. The results were evaluated on a 
large dataset of airborne radar imagery collected during 
IceBridge mission over Antarctica and we reached high 
accuracy of 81% with respect to hand-labeled ground 
truth. 
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